
Charles Lee
SAIC

NASA Ames Research Center
Moffet Field, CA. 94035

clee@mail.arc.nasa.gov
650-604-6054

Peter Robinson Richard L. Alena
QSS

NASA Ames Research Center
Moffet Field, CA. 94035

NASA Ames Research Center
Moffet Field, CA. 94035

650-604-0262 650-604-35 13
Richard.L.Alena@nasa.gov probinson@mail.arc.nasa.gov

Abstruct- The Fault Tree Analysis shows the possible
causes of a system malfunction by enumerating the suspect
components and their respective failure modes that may
have induced the problem. The complex systems often use
fault trees to analyze the faults. Fault diagnosis, when it
occurs, is performed by engineers and analysts performing
extensive examination of all data gathered during the
mission. International Space Station (ISS) control center
operates on the data feedback from the system and decisions
are made based on threshold values by using fault trees.
Since those decisions making tasks are time critical and
must be done promptly, the engineers who manually analyze
the data are facing the time challenge. To automate this
process, this paper present an approach that uses decision
trees to capture the contents of fault trees and detect fault by
running the data through the decision trees in real time.
Decision trees (are also called classification trees) are the
binary trees built based on daa it can classify the objects to
different classes. In our case, the decision trees can classify
different fault event or normal event. Given a set of data
samples, decision trees can be built and trained, and then by
running the new data through the trees, classification and
prediction can be made. In this way, diagnostic knowledge
for fault detection and isolation can be represented as
diagnostic rules; we call this tree the diagnostic decision
trees. By showing the fault path in decision tree, we also
can point out the root cause when a fault occurs. Since all
the procedures and algorithms are available to build decision
trees, the trees built are cost effective, time effective.
Because of the diagnostic decision trees are based on data
and previous knowledge of logic, the DDT can also be
trained to predict fault, detect unknown fault. Based on this,
the needs for on board or service bay, real time oriented
diagnostics can readily be met. Diagnostic Decision Trees
are built based on the fault trees as static trees that service as
the fundamental diagnostic trees. And the dynamic DDTs
are built over time from the operation data. The dynamic
DDT will add the functionalities of prediction, and will be
able to detect unknown fault. Crew or maintenance
engineers can use the decision tree system without having
previous howledge or experience about the diagnosed
system. To our knowledge, this is the first paper to propose
a solution to build diagnostics decision trees fiom fault tree,

which convert the reliability analysis models to diagnostic
models. We show through mapping and ISS examples that
the approach is feasible and effective. We also present
future work and development.

TABLE OF CONTEXTS

1. I~~TRODUCTION. .. 1
2. CONVERSION METHOD .. 2
3. APPLICATIONS .. 4
4. CONCLUSION ... 5
5. F C J DEVELOPMENT 5
REFERENCES ... 5
BIOGRAPHY ... 5

1. INTRODUCTION

Fault tree concept is developed by Bell Telephone
Laboratories in 1962 for the U.S. Air Force for use with the
Minuteman system. It was later adopted and extensively
applied by the Boeing Company, is one of the most widely
used methods in system reliability analysis for a long time
[3] . It is a deductive procedure for determining the various
combinations of hardware and software failures, and human
errors that could result in the occurrence of specified
undesired events (referred to as top events) at the system
level. As part of the analysis, the minimal cut sets of a fault
tree can be determined [2]. And then fault tree can be built.
Individual fault tree can be visualized and draw. Fault trees
are usually individually built for each part of the system for
each top event. It is hard to have generic software to traverse
fault trees. In the other hand, the decision trees are matured
data structure and it is very easy to manipulate in a software
program. Using decision tree to represent fault tree will
increase the operability and decrease response time for
system diagnostic, and furthermore, its visualization will
make users easier to see the root cause of the fault and path
from which the fault came. As the high availability of many
different tree algorithms implementations in computer
science field, using decision tree to manage the fault tree no
doubt is one of best consideration. In this paper, we present
a method to convert existing fault trees to decision trees.
More general way of constructing decision tree is presented.

1

The method is easy to be pro-gmnmed and run on a
computer since the decision tree algorithms has many
available implementations [4]. This method also provides a
good tool for researchers on simulation and prediction tasks.
By using this method, one can analyze the data samples
fi-om the past and categorized them into different classes;
abnormal, normal, and fault event in such a way that kture
fault can be predicted fi-om the past. This could be a data
mining and run time updating. Such artificial intelligent
application is presented in the paper as form of fiamework
architecture.

Where this document is silent on a formatting question, it is
because it is not important or is the writer’s option. When in
doubt make a choice that makes your document readable.

2. CONVERSION METHOD

There are some other attempts to represent fault trees by
other forms; one of them is building diagnostic map fi-om
fault tree [l]. Decision trees are the trees usually, built on
data. Let’s look at a fault tree and see how can we map it to
the decision trees. Take a sample fault tree in the form of
following:

Over Voltage

Validity 0 (1 = invalid)
3 consecutive readings

Voltage B <= 10

Validity o(1 =invalid)

Figure 1 Over Voltage Event Fault Tree

We have 6 inputs to the trees. The inputs remain the same
for decision tree. The corresponding decision tree should
have the same functionality in terms of samples inputs and
fault triggers. In the other words, the same inputs to the fault
tree, or to the decision tree will have the same result. The
corresponding tree can be built as in Figure 2. If the data can
reach all the way to terminal node 6 , we have known that the
system is at over voltage fault. The decision tree not only
provides the final result if the system is at fault status, it can
also provides the interim status by loolung at where the
sample data end up to.

UdA=1 UdA=O

ValidateUdA G t e U d A

10

Figure 2 Decision Tree for Over Voltage

To show more common case that includes OR gate in the
fault tree, the other example is shown here:

Frame count

Fad to change m 4 seco
GIVC enabled

SM loss c o r n = I (4 not)

3 second

Figure 3 GNC Fail Event Fault Tree

In this case, more balanced data inputs will end up with
more evenly distributed decision tree. In a same way as we
showed earlier, the corresponding decision tree is presented
as follows:

GNCe=t/ NCe=f s 3=t ;“.1 h3=f
Figure 4 Decision Tree for GNC Fail

We had demonstrated that fault trees can be shown and

2

?

to decisioii zses -*+A cxmp.!es =f the c./ey vzpqe

and GNC fail fault trees. The convenient use of decision tree
is that the available decision tree software program can
easily pin point out a root cause of an event (including fault
event) by recording the edges in the path of the tree when
giving reports and evaluation of the system status. For more
general purpose and more easy illustration, we can abstract
the dormation into a map and construct a decision tree
fiom map. The map basically represents the different events,
including fault event, in the n dimension space. When we
deal with decision trees, we call the events classes. The class
could be fault, nominal, or warning etc. This demonstration
shown that the decision tree not only can derived from fiult
tree nut also can be construct from data samples, which is
very useful in the real time fault detection and prediction.

Figure 5 Classes distributions

To map to the decision tree, we use an example to explain it.
We assume faults in the two dimension space for
simplification of visualization. Multiple dimensions will
follow the same rules. In Figure 5, we give an example of
the fault scenarios, the cylinders represent normal, called
class 1 and cubes represent faults, called class 2. We will
use cumulative distribution function (c@ for tree
construction. The cdf is the probability that the variable
takes a value less than or equal to x. That is

This can be expressed mathematically for continuous
distribution:

For a discrete distribution, the cdf can be expressed as

2

F(4 = Cfii>
e 0 (3)

WET? we rncss~rt a dec%inn_ treej we have a root then we
have two branches, further, each of those branch can, has
maximum of two branches, until no further branches, we
reach the bottom of the tree and we done. Those procedures
could be said in another way; we are splitting the data until
it couldn't split any more. So what we need is where to split.
and when do we stop splitting. With the method of
accumulate distribution function, we construct the trees in
following steps. First, calculate the cdf for each class.
Second, compare the result for each class in all the points.
Third, the largest value will be picked and the x will be
the split point. Repeat first to third step until no more point
to split. In the example, we calculate the cdffor each class as
a function of each attribute (see Figure 5), and then pick the
split point where the difference of the two cdfvalues is
maximurn.

-fi-

n;:
SI s2 SI s5

Figure 6 Calculate split point by using c&(l)

We repeatedly split until all samples in a node are of the
same class. In Figure 6, the horizontal axis is the possible
split points s, 1 < i <= 5 corresponding to the x-axis in
Figure 6 , and the vertical axis is the value of the cdf for each
class. In Figure 6 f, is the cdfvalue for class 1 (cylinders)

and f, is the cdfvalue for class 2 (cubes).
In Figue 5, the vertical axis is the possible split points.
SI 5 < i <= 10 corresponding to the y-axis in Figure 5, and
the horizontal axis is the value of the cdffor each class. In
Figure 6 A is the cdfvalue for class 1 (cylinders) and f,
is the cdfvalue for class 2 (cubes). The purpose is to find
the point where the distance between f, and f, is the
maximum. To calculate the cdf; we used the estimated
function n, / N , . The total number of samples in class 1 is

6, and in class 2 is 4. AT, = 6 and iv, = 4. As shown in

Fiagpre 5 at split point SI , we have t h e 5 value of 116, and

fi value of 0. At split point s, we have the value of

216, and afi value of 114. At split point s, we have the A
value no change, still 216 or 113, and a f7 value of 214 or

112. At split point S, we have the A value of 112 and a f,
value of 314. At split point s, .we have the f, value of 516

and a f, value of no change, 314.

3

Figure 7 Calculate Split Point Using cdf(2)

have the fi value of 316, and a f i value of 0. With the

same calculations, at split point s, we have the f, value of

416 and a f i value of 0. Again, at split point s, we have

the f, value of 5/6 and a f, value of 1/4. At split point

s,, ,we have the A value of 1 and a f7 value of 214.

From Fi-gues 6 and 7, we can see that the split S,g has the
maximum distance (416) between f, and f, among all

others. Therefore, we pick the fist split point as s, . After

we split the set on s,, we have two subsets, one of the
subsets has only class 1 in it, and so we don't need to do the
further split on this subset. But on the other subset, we will
repeat the same calculations on the remaining samples to
fmd the further split points. The procedures to calculate the
cdf and se!ect the maximum distance between f, and

f2 are the same as above. The constructed tree is shown in
Figure 8.

I

\ s3 1
-.-..-,

+-- / /" '
i

Figure 8 Final Decision Tree

When the real time data come in, we let them go through the
decision tree that we constructed. The faults occurred when
the data sample fall in fault class at the terminal node. To
illustrate how the fault happened, we can show the fault by
tracking the path that the data went through. Visualization
of the path with the distinctive color or shape will show user
the clear clue of cause of the fault.

This method not only can apply to the conversion of the
fault trees to decision trees, it can also construct decision
trees from data samples at run time of the operation of ISS
over time. By simply select a set of data samples ffom time
to time, we can built decision trees. In later time, the built
decision trees can be used to compare the new data and to
predict future fault. The best use of such trees is to build
trees by applying grouped fault scenarios. Then applying
real time data to the tree to compare the pattern, the faults
can be detected when a pattern is matched.

This method can not only apply to the conversion of the
fault trees to decision trees, it can also construct decision
trees from data samples at run time of the operation of
International Space Station over time. We can select a set of
data samples, especially the ones that are representative,
fiom time to time and built decision trees for those systems
by fault scenarios. Data patterns are captured in the tree and
can be recognized when the future data samples pass
through the trees. When real time data samples applied to
the tree, the faults pattern could be recognized and the fault
could be detected.

3. APPL~CATIONS

From above illustration, we can migrate the fault trees to
decision trees. We also can build decision trees from
event and data. The decision trees converted fiom fault
trees could be used as diagnostic tools when the fault
happened, run the data through the trees and find out

4

---L--- A-4- -+A- . --Am- +- G-A ,,,.+ ..,hot fo,,lt &ha,. WUClC uaul J’Vp, iii VlUG1 LW mu “ U C . . Y U C IYV... vu-.

applications are also possible by utilizing decision trees.
One we know it that the decision tree is very well suit for
data mining task, we can apply our trees to an data
mining application targeting at recognizing fault patterns
and do early fault detection and prediction. A design
model , a h e work model, is presented in Figure 9. In
the figure, we can see the decision trees fit into
knowledge discovery part of the data mining process [6].
We have initial decision trees in there for fault diagnostic
and we have on going decision trees building on real time
when the system is running. We can build such a tree that
records fault patterns each time when a fault event
occurs. Especially, we record the fault trends patterns so
we can use such tree to recognize fault in its early stage.

Figure 9 Decision trees in data mining application

4. CONCLUSION

We started from ISS fault trees example to migrate to
decision trees, presented a method to convert fault trees to
decision trees. The method shows that the visualizations of
root cause of fault are easier and the tree manipulating
becomes more programmatic via available decision tree
programs. The visualization of decision trees for the
diagnostic shows a format of straight forward and easy
understands. For ISS real time fault diagnostic, the status of
the systems could be shown by nmning the signals through
the trees and see where it stops at. The other advantage to
use decision trees is that the trees can learn the fault patterns
and predict the future fault from the historic data. The
learning is not only on the static data sets but also can be
online, through accumulating the real time data sets, the
decision trees can gain and store faults patterns in the trees
and recognize them when they come.

5. FUTURE DEVELOPMENT

f i s paper presented the method to migrate the fault trees to
decision trees, which lays a good foundation for using data
mining technique in advanced diagnostic system. The next
step will naturally fall to a project to implement a data
mining software for fault detection, prediction, and analysis.
Such software will use the decision trees as an engine inside

nf the A!5g%?StiC system q$hti-Si_nn. This engiDe w:!! he
able to gain knowledge of fault patterns then recognize it.

REFERENCES

[l] Tariq Assaf and Joanne Bechta Dugan, “Automatic
generation of diagnostic expert systems fiom fault trees,”
Reliability and Maintainability Symposium, January 2003.

[2] Zhihua Tang and Joanne Bechta Dugan, “Minimal Cut Set
and Sequence Generation for Dynamic Fault Trees,”
Reliability and Maintainability Symposium, January 2004.

[3]Joanne Bechta Dugan, “Sohare system analysis using
fault trees,” Chapter 15, Handbook of Sofiware Reliability
Engineering, editor MR. Lyu, IEEE Computer Society
Press, McGraw-Hill Publication 1996.

[4] J. R Quinlw Induction of Decision Trees, Machine
Learning, v.1 n.1, p.81-106, 1986

[5] Ping. Li, Richard. E. Haskell, Darrin. M. Hanna,
“Optimizing Fuzzy Decision Tree by Using Genetic
Algorithms,” Proceedings of the International Conference
on Artificial Intelligence, June, 2003, Las Vegas, USA

[6] Olaru, C. and L. Wehenkel, Data Mining. IEEE Computer
Applications in Power, 1999. 12(3): p. 19-25.

BIOGRAPHY

Charles Lee is the Technical Lead on
Mobile Agents project at NASA Ames
Research Center. He hold a Ph.D. in
systems engineering and computer science
@om Oakland Universiv, in Rochester,
Michigan. Completed research projects
includes several systems that have been

successful(y deployed at the Mars Desert Research Station,
providing functions for extending human performance and
situational awareness into the planetaty exploration domain
targeting future Mars exploration. These include robust
GPS switchboard on-demand services that provide GPS
information with awareness of loss and the ability to regain
wireless network connections, and a store and forward
architecture to maintain data continuity in the event of
network connection loss. In addition, Dr. Lee developed
distributed agents that serve sensor information through a
publish and subscribe architecture in heterogeneous
computer environments, and a mapping and planning
system that provides location and orientation of mobile

5

rovers and astronauts on ropogruphic miup j%i FiiiGiguZh
planning and real time monitoring. Other work includes
joint development of custom sofhare to provide access to
avionics data for Advanced Diagnostics System (ADS)
applications, and collection and organization of
International Space Station QSSJ data sets by f m l t scenario,
along with liaison with ADS developers and users in the
design of data interfaces, user interfaces and tools relevant
to ADS on ISS. He developed the first version of Caution
and Warning cube visualization software that handles the
command and data handling events for fault detection.

Richard Alena is a Computer
Engineer and Group Lead for the
Intelligent Mobile Technologies
research and development team in
Computational Sciences Division at
NASA Ames. He led the design and
development of distributed mobile

data systems supporting geological and biological scientrjic
surveys in the Canadian Arctic and American Desert,
investigating advanced computing solutions for planetmy
aploration and coordinating satellite and wireless
networks with wearable computing _for multi-agent
simulations. Mr. AIena r i the co-lead for the joint ARC-JSC
Advanced Diagnostic Systems for International Space
Station Project, developing model-based diagnostic tools
for space operations. He is also involved with TEAMS and
Livingstone researchers, supporting development of
subsystem interaction models and Caution and Warning
analysis. As a senior computer scientist he was the chief
architect of a flight experiment conducted aboard Shuttle
and Mir using laptop computers, personal digital assistants
and servers in a wireless network for the International
Space Station. He is also the technical lead for the Databus
Analysis Tool for International Space Station on-orbit
diagnosis. Mr. Alena hold a B. S. and M.S. in Electrical
Engineering and Computer Science @om the University of
California, Berke!q and hold a US. patent for “Three
Electrode Hydroquinone Subcutaneous Equilibrating
Tonometer.” He is the winner of a NASA Silver Snoopy
Award in 2002 and a NASA Space Act Award for A
Comprehensive Toolset for Model-Based Health Monitoring
and Diagnostics. He has also been awarded a JSC Group
Achievement Award in 2000 for his participation in the
Cockpit Avionics Upgrade DisplqKontrol Application
Requirements Team, a NASA Group Achievement Award in
1998 for his work on the ISS Phase I Program Team and a
Space Flight Awareness Award in 1997.

Peter Robinson earned a bachelor’s degree in computer
science f iom the Universiq of California at Santa Cruz in
I987. Since I988 he has worked as a computer scientist at
NASA Ames on a wide variety of domains addressing issues
of integrated quantitativdqualitative modeling for design,

6

fkdt dkbp?sis ~d ~n.~t*n! . CtlrrPntlqr h P i.x both pro/’ect
manager, sojhare and modeling lead of the ISStrider
project - a project developing model-based diagnosis
reasoning tools to support the Fault Detection Isolation and
Recovery (FDIR) of the International Space Station QSS)
Command and Data Handling (C&DH) system. In this
capacity, he has lead the advocacy of the ISStrider project
both at NASA Ames and JSC as well as the design,
sofhardmodel development and analysis of the ISStrider
sofhYare system. In his sixteen years at NASA Ames he has
applied advanced remoning method to diverse set of
research and development applications including: 1) tools
to support design qf life-support systems 2) science
instrument control systems for a Mars robotic geologist as
well as a Bioreactor to model earthly-Earth atmosphere
conditionsnife-support systems analogs 4) integrated
quantitativdqualitative diagnosis models of the space
shuttle (STS) reaction control systems (RCS) 5) &namics
modeling of the Deep Space I P S I) spacecraft to support
thruster diagnosis 6) automated grid generation tools to
support computational fluid cfvnamics (CFD) modeling 7)
advanced 3 0 visualization methods for aircraft descent and
NASA program management and 8) sofiware formal
methodr tool development for tracing dependencies through
automatically generated programs.

